• Efficient cooling method could enable chip-based trapped-ion quantum computers

    Efficient cooling method could enable chip-based trapped-ion quantum computers
    Quantum computers could rapidly solve complex problems that would take the most powerful classical supercomputers decades to unravel. But they’ll need to be large and stable enough to efficiently perform operations. To meet this challenge, researchers at MIT and elsewhere are developing trapped-ion quantum computers based on ultra-compact photonic chips. These chip-based systems offer a scalable alternative to existing trapped-ion quantum computers, which rely on bulky optical equipment.Th
  • Efficient cooling method could enable chip-based quantum computers

    Efficient cooling method could enable chip-based quantum computers
    Quantum computers could rapidly solve complex problems that would take the most powerful classical supercomputers decades to unravel. But they’ll need to be large and stable enough to efficiently perform operations. To meet this challenge, researchers at MIT and elsewhere are developing quantum computers based on ultra-compact photonic chips. These chip-based systems offer a scalable alternative to some existing quantum computers, which rely on bulky optical equipment.These quantum compute